152 research outputs found

    Spray combustion simulation study of waste cooking oil biodiesel and diesel under direct injection diesel engine conditions

    Get PDF
    Spray combustion characteristics of waste cooking oil biodiesel (WCO) and conventional diesel fuels were simulated using a RANS (Reynolds Averaged Navier Stokes) based model. Surrogates were used to represent WCO and diesel fuels in simulations. N-tetradecane (C₁₄H₃₀) and n-heptane (C₇H₁₆) were used as surrogates for diesel. Furthermore for WCO, surrogate mixtures of methyl decanoate, methyl-9-decenoate and n-heptane were used. Thermochemical and reaction kinetic data (115 species and 460 reactions) were implemented in the CFD code to simulate the spray and combustion processes of the two fuels. Validation of the spray liquid length, ignition delay, flame lift-off length and soot formation data were performed against previous published experimental results. The modeled data agreed with the trends obtained in the experimental data at all injection pressures. Further investigations, which were not achieved in previous experiments, showed that prior to main ignition, a first stage ignition (cool flame) characterized by the formation formaldehyde (CH₂O) species at low temperature heat release occurred. The main ignition process occurred at high temperature with the formation of OH radicals. Furthermore, it was observed that the cool flame played a greater role in stabilizing the downstream lifted flame of both fuels. Increase in injection pressure led to the cool flame location to be pushed further downstream. This led to flame stabilization further away from the injector nozzle. WCO had shorter lift-off length compared to diesel as a result of its cool flame which being closer to the injector. Soot formation followed similar trends obtained in the experiments

    Computational singular perturbation analysis of brain lactate metabolism

    Get PDF
    Lactate in the brain is considered an important fuel and signalling molecule for neuronal activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lactate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of which are supported by extensive, but indirect, experimental evidence. This work explores the conditions favouring development of ANLS or NALS phenomenon on the basis of a model that can simulate both by employing the two parameter sets proposed by Simpson et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry, 109:55, 2009). As most mathematical models governing brain metabolism processes, this model is multi-scale in character due to the wide range of time scales characterizing its dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm, which has been used extensively in multi-scale systems of reactive flows and biological systems, to identify components of the system that (i) generate the characteristic time scale and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces of equilibria that develop in phase space and (iii) control the evolution of the process within the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS or NALS configuration will develop during neuronal activation is whether the lactate transport between astrocytes and interstitium contributes to the fast dynamics or not. When it does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while when it doesn’t, lactate is mainly generated in neurons and the NALS hypothesis is realised. This scenario was tested in exercise conditions

    A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks

    Get PDF
    The success of catalytic schemes for the large-scale valorization of CO2 does not only depend on the development of active, selective and stable catalytic materials but also on the overall process design. Here we present a multidisciplinary study (from catalyst to plant and techno-economic/lifecycle analysis) for the production of green methanol from renewable H2 and CO2. We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts (InCo) with a thorough process simulation and techno-economic assessment. We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO2. Our results indicate that up to 1.75 ton of CO2 can be abated per ton of produced methanol only if renewable energy is used to run the process, while the sensitivity analysis suggest that either rock-bottom H2 prices (1.5 kg1)orsevereCO2taxation(300 kg−1) or severe CO2 taxation (300 per ton) are needed for a profitable methanol plant. Besides, we herein highlight and analyze some critical bottlenecks of the process. Especial attention has been paid to the contribution of H2 to the overall plant costs, CH4 trace formation, and purity and costs of raw gases. In addition to providing important information for policy makers and industrialists, directions for catalyst (and therefore process) improvements are outlined.The authors gratefully acknowledge financial support from the King Abdullah University of Science and Technology (KAUST). T. Cordero-Lanzac and A.T. Aguayo acknowledge the financial support received from the Spanish Ministry of Science and Innovation with some ERDF funds (CTQ2016-77812-R) and the Basque Government (IT1218-19). T. Cordero-Lanzac also acknowledges the Spanish Ministry of Education, Culture and Sport for the award of his FPU grant (FPU15-01666). A. Navajas and L.M. Gandía gratefully acknowledge the financial support from Spanish Ministerio de Ciencia, Innovación y Universidades, and the European Regional Development Fund (ERDF/FEDER) (grant RTI2018-096294-B-C31). L.M. Gandía also thanks Banco de Santander and Universidad Pública de Navarra for their financial support under ‘’Programa de Intensificación de la Investigación 2018’ initiative

    Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    Get PDF
    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The mixtures cover a RON range of 0-100, with the majority being in the 70-100 range. A parametric simulation study across a temperature range of 650-950 K and pressure range of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore, temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling the antiknock behavior of the fuels

    A comprehensive combustion chemistry study of n-propylcyclohexane

    Get PDF
    Alkylated cycloalkanes are vital components in gasoline, aviation, and diesel fuels; however, their combustion chemistry has been less investigated compared to other hydrocarbon classes. In this work, the combustion kinetics of n-propylcyclohexane (n-Pch) was studied across a range of experiments including pressurized flow reactor (PFR), jet stirred reactor (JSR), shock tube (ST), and rapid compression machine (RCM). These experiments cover a wide range of conditions spanning low to intermediate to high temperatures, low to high pressures at lean to rich equivalence ratios. Stable intermediate species were measured in PFR over a temperature range of 550–850 K, pressure of 8.0 bar, equivalence ratio (φ) of 0.27, and constant residence time of 120 ms. The JSR was utilized to measure the speciation during oxidation of n-Pch at φ of 0.5–2.0, at atmospheric pressure, and across temperature range of 550–800 K. Ignition delay times (IDTs) for n-Pch were measured in the RCM and ST at temperatures ranging from 650 to 1200 K, at pressures of 20 and 40 bar, at φ=0.5,1.0. In addition, a comprehensive detailed chemical kinetic model was developed and validated against the measured experimental data. The new kinetic model, coupled with the breadth of data from various experiments, provides an improved understanding of n-Pch combustion

    Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    Get PDF
    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The mixtures cover a RON range of 0-100, with the majority being in the 70-100 range. A parametric simulation study across a temperature range of 650-950 K and pressure range of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore, temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling the antiknock behavior of the fuels
    corecore